Abstract
The remediation of diesel-contaminated soil is a critical environmental concern, driving the need for effective solutions. Recently, the methodology of Non-thermal Atmospheric Plasma (NTAP) technology, which is equipped with a Dielectric Barrier Discharge (DBD) electrode and has become a feasible approach, was proven to be viable. The reactive species from the plasma were exposed to the contaminated soil in this investigation using the NTAP technique. The reacted soil was then extracted using dichloromethane, and the amount of Total Petroleum Hydrocarbon (TPH) removed was assessed. Investigation into varying power levels, treatment durations, and hydrogen peroxide integration revealed significant findings. With an initial concentration of 3086 mg of diesel/kg of soil and a pH of 5.0, 83% of the diesel was removed from the soil at 150 W in under 20 min. Extended exposure to NTAP further improved removal rates, highlighting the importance of treatment duration optimization. Additionally, combining hydrogen peroxide (H2O2) with NTAP enhanced removal efficiency by facilitating diesel breakdown. This synergy offers a promising avenue for comprehensive soil decontamination. Further analysis considered the impact of soil characteristics on removal efficacy. Mechanistically, NTAP generates reactive species that degrade diesel into less harmful compounds, aiding subsequent removal. Overall, NTAP advances environmental restoration efforts by offering a quick, economical, and environmentally benign method of remediating diesel-contaminated soil especially when used in tandem with hydrogen peroxide.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.