Abstract

We use the NASA Ames Polycyclic Aromatic Hydrocarbon (PAH) infrared spectroscopic database to model infared emission of PAHs following absorption of a UV photon. We calculate emission spectra resulting from the full cooling cascade for each species in the database. Using a least squares approach, we can find out what PAH mixtures best reproduce a few typical astronomical observations representing the different classes of UIR spectra. We find that we can reproduce the observed UIR spectra in the wavelength range 6–14 μ m, offering support for the hypothesis that the UIR bands are indeed due to vibrational modes of PAHs and related molecular species. Spectral decompositions of our best fit models confirm and reinforce several earlier results: (i) the 6.2 μ m band requires a significant contribution of nitrogen-substituted PAHs (PANHs); (ii) the reported components and their variations in the 7.7 μ m band are indicative of changes in the size distribution of the contributing molecules; (iii) there is a significant contribution of anions to the 7.7 μ m band; (iv) the 11.2 μ m band is due to large, neutral and pure PAHs; (v) the 11.0 μ m band is due to large PAH cations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.