Abstract

The shrinking processor feature size, lower threshold voltage and increasing on-chip transistor density make current processors highly vulnerable to soft errors. Architectural Vulnerability Factor (AVF) reflects the probability that a raw soft error eventually causes a visible error in the program output, indicating the processor’s susceptibility to soft errors at architectural level. The awareness of the AVF, both at the early design stage and during program runtime, is greatly useful for designing reliable processors. However, measuring the AVF is extremely costly, resulting in large overheads in hardware, computation, and power. The situation is further exacerbated in a multi-threaded processor environment where resource contention and data sharing exist among different threads. Consequently, predicting the AVF from other easily-measured metrics becomes extraordinarily attractive to computer designers. We propose a series of AVF modeling and prediction works via using advanced statistical techniques. First, we utilize the Boosted Regression Trees (BRT) scheme to dynamically predict the AVF during program execution from a variety of performance metrics. This correlation is generalized to be across different workloads, program phases, and processor configurations on a single-threaded superscalar processor. Second, the AVF prediction is extended to multi-threaded processors where the inter-thread resource contention shows significant and non-uniform impacts on different programs; we propose a two-level predictive mechanism using BRT as building blocks to characterize the contention behavior. Finally, we employ a rule search strategy named Patient Rule Induction Method (PRIM) to explore a large processor design space at the early design stage. We are capable of generating selective rules on important configuration parameters. These rules quantify the design space subregion yielding lowest values of the response, thereby providing useful guidelines for designing reliable processors while achieving high performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.