Abstract

In the field of physically based simulation, high quality of the simulation model is crucial for the correctness of the simulation results and the performance of the simulation algorithm. When working with spline or subdivision models in the context of isogeometric analysis, the quality of the parameterization has to be considered in addition to the geometric quality of the control mesh. Following Cohen et al.'s concept of model quality in addition to mesh quality, we present a parameterization quality metric tailored for Catmull-Clark (CC) solids. It measures the quality of the limit volume based on a quality measure for conformal mappings, revealing local distortions and singularities. We present topological operations that resolve these singularities by splitting certain types of boundary cells that typically occur in interactively designed CC-solid models. The improved models provide higher parameterization quality that positively affects the simulation results without additional computational costs for the solver.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call