Abstract

Large flowmeters are used in many industrial facilities, including power plants, cooling-water stations for refineries, and petrochemical plants. These flowmeters are employed for various purposes, including billing. Just like all machines, flowmeters are subject to failure. Drift is a particular type of failure in which the flowmeter produces an error in measurement that would incrementally increase with time. Maintenance technicians calibrate and fix all measuring equipment, including flowmeters. Nevertheless, downsizing policies and budget cuts in most contemporary industrial facilities have made these technicians overwhelmed with work. A mathematical and computer-based drift-detection scheme is developed to reduce the burden of the maintenance staff. The detection scheme only uses the flowmeter's flow data and the discrete Fourier transform (DFT). The detection scheme was applied over the flow data from an actual flowmeter that drifted during its operation. DFT application over the data produced by the flowmeter led to expected results and other unexpected results. This paper discusses both results and suggests areas for further study. Practically speaking, the scheme would facilitate the early detection of drifts in flowmeters having seasonal flow regardless of type or manufacturer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call