Abstract

The POXR and SMR methods adopted in producing hydrogen from methane gas are simulated and exergy analysis of both the processes are run for comparison. The effective parameters of the feeding materials ratio and the system temperature for maximizing hydrogen production and increasing efficiency are assessed here. Influenced by the changes in these parameters the unit efficiency is increased up to 76%. The efficiency of POXR and SMR processes are calculated for new ratios. The results indicate that SMR process has higher exergy efficiency than POXR process. Exergy efficiency of SMR and POXR processes are obtained as to 73.2 and 66.9, respectively, where the SMR efficiency process is increased by 2.6% because of the changes in the feeding material ratio and temperature. Highest destruction of exergy in methanator reactor in SMR process is due to high temperature of reaction caused by irreversibility from chemical reactions. Exergy destruction is reduced at high temperature and unit molar ratio.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call