Abstract

In recent years, online shopping has surged in popularity, with customer reviews becoming a crucial aspect of the decision-making process. Reviews not only help potential customers make informed choices, but also provide businesses with valuable feedback and build trust. In this study, we conducted a thorough analysis of the Amazon reviews dataset, which includes several product categories. Our primary objective was to accurately classify sentiments using natural language processing, machine learning, ensemble learning, and deep learning techniques. Our research workflow encompassed several crucial steps. We explore data collection procedures; preprocessing steps, including normalization and tokenization; and feature extraction, utilizing the Bag-of-Words and TF–IDF methods. We conducted experiments employing a variety of machine learning algorithms, including Multinomial Naive Bayes, Random Forest, Decision Tree, and Logistic Regression. Additionally, we harnessed Bagging as an ensemble learning technique. Furthermore, we explored deep learning-based algorithms, such as CNNs, Bidirectional LSTM, and transformer-based models, like XLNet and BERT. Our comprehensive evaluations, utilizing metrics such as accuracy, precision, recall, and F1 score, revealed that the BERT algorithm outperformed others, achieving an impressive accuracy rate of 89%. This research provides valuable insights into the sentiment analysis of Amazon reviews, aiding both consumers and businesses in making informed decisions and enhancing product and service quality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.