Abstract

This study describes a simple method for analyzing the abundance of mRNA molecules in a total DNA sample. Due to the dependence on the near-infrared fluorescence technique, this method is named near-infrared fluorescence gene expression detection (NIRF-GED). The procedure has three steps: (1) isolating total RNA from detected samples and reverse-transcription into cDNA with a biotin-labeled oligo dT; (2) hybridizing cDNA to oligonucleotide probes coupled to a 96-well microplate; and (3) detecting biotins with NIRF-labeled streptavidin. The method was evaluated by performing proof-in-concept detections of absolute and relative expressions of housekeeping and NF-κB target genes in HeLa cells. As a result, the absolute expression of three genes, Ccl20, Cxcl2, and Gapdh, in TNF-α-uninduced HeLa cells was determined with a standard curve constructed on the same microplate, and the relative expression of five genes, Ccl20, Cxcl2, Il-6, STAT5A, and Gapdh, in TNF-α-induced and -uninduced HeLa cells was measured by using NIRF-GED. The results were verified by quantitative PCR (qPCR) and DNA microarray detections. The biggest advantage of NIRF-GED over the current techniques lies in its independence of exponential or linear amplification of nucleic acids. Moreover, NIRF-GED also has several other benefits, including high sensitivity as low as several fmols, absolute quantification in the range of 9 to 147fmols, low cDNA consumption similar to qPCR template, and the current medium throughput in 96-well microplate format and future high throughput in DNA microarray format. NIRF-GED thus provides a new tool for analyzing gene transcripts and other nucleic acid molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.