Abstract
Compositional data (CoDa) has been monitored in statistical process monitoring, where multivariate control charts (CCs) such as Hotelling TC2, MEWMA-CoDa, and MCUSUM-CoDa are commonly used to determine if a process is in-control. However, these charts can encounter problems when there is an out-of-control (OOC) process due to various factors such as shifts in variables, outliers, or trends. To address this issue, a pattern recognition (PR) tool using multilayer feed-forward neural networks (MLFFNN) is proposed to accurately recognize CoDa patterns. In the simulation study, six different models in simplex sample space are used to induce trends and shifts in CoDa, and sufficient samples are generated to evaluate the proposed PR model’s performance. The isometric log-ratio (ilr) transformation is applied to CoDa to convert the data from simplex sample space to real space. The Hotelling TC2 statistic is obtained from the generated values after applying the ilr transformation. TC2 statistic is then standardized for MLFFNN, and a back-propagation learning algorithm is used to accurately fit the PR model. Results show the proposed model accurately identifies the CCs pattern, even during OOC processes. A time budget CoDa is analyzed to demonstrate the proposed model’s effectiveness in recognizing patterns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.