Abstract
With the increase in the capacity of mobile communication devices, it is but natural to expect that these devices would work ubiquitously anywhere anytime to offer high data rate support. Recently 60 GHz frequency band has been identified as an obvious choice for the high data rate indoor communications. However, as the 60 GHz radio system relies on line-of-sight (LOS) transmission for achieving Gbps data rate, the communication can be easily interrupted by obstructions breaking the LOS link, which happens often due to the movement of people in a typical indoor environment. In this paper, we define and present an analytical model for assessing link stability of 60 GHz radio for indoor wireless networks. We have developed a ray-based model to calculate the shadowing loss caused by the presence of people around the communication link while taking into account the indoor channel characteristics of 60 GHz radio and the antenna configuration. We have further considered different types of mobility of people with the ray-based model of 60 GHz link to obtain a holistic link stability model in realistic scenarios. We have given examples to show the relevance of our model and its applicability using both simulation and numerical evaluations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.