Abstract
Movie is an important cultural form, carrying multiple levels and meanings such as art, entertainment and social value. Movie review and rating data sets are huge, and deep learning and natural language processing methods are widely used today. Advances in big data and deep learning offer unprecedented opportunities to understand moviegoer behavior and preferences while providing a cost-effective way to gain insights relevant to the entertainment industry. This project conducts sentiment analysis, topic modeling, and visual statistical analysis based on the IMDb movie data set to identify key factors and deeper insights that influence successful decision-making in film production. This project first uses the word embedding method to vectorize the movie review text, and then uses Bidirectional Long Short-Term Memory (Bi-LSTM) to perform sentiment classification. In addition, statistical methods such as visualization were used to discover conclusions such as the highest average number of movies released in November, and identify trends, patterns and relationships between the variables of IMDb movies. Finally, the Latent Dirichlet Allocation (LDA) topic modeling model was constructed to find out that the important topic with increased demand is light entertainment movies, highlighting the commercial feasibility of comedy movies as a profitable business model. In summary, this project uses an emotion-topic fusion analysis method based on the Bi-LSTM emotion classification method and the LDA topic modeling method. The results show that the Bi-LSTM model can better identify positive and negative emotions in movie reviews, and the LDA topic model performs well in mining popular topics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.