Abstract

We compute spin-flip cross section for graviton photoproduction on a spin-1/2 target of finite mass. Using this tree-level result, we find one-loop graviton correction to the spin-flip low-energy forward Compton scattering amplitude by using Gerasimov-Drell-Hearn sum rule. We show that this result agrees with the corresponding perturbative computations, implying the validity of the sum rule at one-loop level, contrary to the previous claims. We discuss possible effects from the black hole production and string Regge trajectory exchange at very high energies. These effects seem to soften the UV divergence present at one-loop graviton level. Finally, we discuss the relation of these observations with the models that involve extra dimensions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call