Abstract

In this paper, we first show that a union of upper-level sets associated to fibrewise Lelong numbers of plurisubharmonic functions is in general a pluripolar subset. Then we obtain analyticity theorems for a union of sub-level sets associated to fibrewise complex singularity exponents of some special (quasi-)plurisubharmonic functions. As a corollary, we confirm that, under certain conditions, the logarithmic poles of relative Bergman kernels form an analytic subset when the (quasi-)plurisubharmonic weight function has analytic singularities. In the end, we give counterexamples to show that the aforementioned sets are in general non-analytic even if the plurisubharmonic function is supposed to be continuous.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.