Abstract

<abstract><p>This paper was concerned with the Cauchy problem of the 3D magnetohydrodynamic (MHD) system. We first proved that this system was local well-posed with initial data in the Besov space $ \dot{B}^{s}_{p, q}(\mathbb{R}^{3}) $, in the critical Besov space $ \dot{B}^{-1+\frac{3}{p}}_{p, q}(\mathbb{R}^{3}) $, and in $ L^{p}(\mathbb{R}^{3}) $ with $ p\in]3, 6[ $, respectively. We also obtained a new growth rate estimates for the analyticity radius.</p></abstract>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.