Abstract

This paper considers the asymptotic properties of the recursive maximum-likelihood estimator for hidden Markov models. The paper is focused on the analytic properties of the asymptotic log-likelihood and on the point-convergence and convergence rate of the recursive maximum-likelihood estimator. Using the principle of analytic continuation, the analyticity of the asymptotic log-likelihood is shown for analytically parameterized hidden Markov models. Relying on this fact and some results from differential geometry (Lojasiewicz inequality), the almost sure point convergence of the recursive maximum-likelihood algorithm is demonstrated, and relatively tight bounds on the convergence rate are derived. As opposed to the existing result on the asymptotic behavior of maximum-likelihood estimation in hidden Markov models, the results of this paper are obtained without assuming that the log-likelihood function has an isolated maximum at which the Hessian is strictly negative definite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.