Abstract
We study a class of nonlinear eigenvalue problems of Schrödinger type, where the potential is singular on a set of points. Such problems are widely present in physics and chemistry, and their analysis is of both theoretical and practical interest. In particular, we study the regularity of the eigenfunctions of the operators considered, and we propose and analyze the approximation of the solution via an isotropically refined [Formula: see text] discontinuous Galerkin (dG) method. We show that, for weighted analytic potentials and for up-to-quartic polynomial nonlinearities, the eigenfunctions belong to analytic-type non-homogeneous weighted Sobolev spaces. We also prove quasi optimal a priori estimates on the error of the dG finite element method; when using an isotropically refined [Formula: see text] space, the numerical solution is shown to converge with exponential rate towards the exact eigenfunction. We conclude with a series of numerical tests to validate the theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematical Models and Methods in Applied Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.