Abstract

For satellites flying in close proximity, monitoring the uncertainties of neighboring satellites’ states is a crucial task because the uncertainty information is used to compute the collision probability between satellites with the objective of collision avoidance. In this study, an analytical closed-form solution is developed for uncertainty propagation in the satellite relative motion near general elliptic orbits. The Tschauner–Hempel equations are used to describe the linearized relative motion of the deputy satellite where the chief orbit is eccentric. Under the assumption of the linearized relative motion and white Gaussian process noise, the uncertainty propagation problem is defined to compute the mean and covariance matrix of the relative states of the deputy satellite. The evolution of the mean and covariance matrix is governed by a linear time-varying differential equation, for which the solution requires the integration of the quadratic function of the inverse of the fundamental matrix associated to the Tschauner–Hempel equations. The difficulties in evaluating the integration are alleviated by the introduction of an adjoint system to the Tschauner–Hempel equations and the binomial series expansion. The accuracy of the developed analytical solution is demonstrated in illustrative numerical examples by comparison with a Monte Carlo analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.