Abstract

Using a suitable Laguerre basis set that ensures a tridiagonal matrix representation of the reference Hamiltonian, we were able to evaluate in closed form the matrix elements of the generalized Yukawa potential with a complex screening parameter. This enabled us to treat analytically both the cosine and sine-like Yukawa potentials on equal footing and compute their bound states spectrum as the eigenvalues of the associated analytical matrix representing their Hamiltonians. Finally we used a carefully designed complex scaling method to evaluate the resonance energies and compared our results satisfactorily with those obtained in the literature for the cosine-like Yukawa potential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.