Abstract

Recently, a square-integrable discrete basis, obtained performing a simple analytical local scale transformation to the harmonic oscillator basis, has been proposed and successfully applied to study the properties of two-body systems. Here, the method is generalized to study three-body systems. To test the goodness of the formalism and establish its applicability and limitations, the capture reaction rate for the nucleosynthesis of the Borromean nucleus ${}^{6}$He (${}^{4}\text{He}+n+n$) is addressed. Results are compared with previous publications and with calculations based on actual three-body continuum wave functions, which can be generated for this simple case. The obtained results encourage the application to other Borromean nuclei of astrophysical interest such as ${}^{9}$Be and ${}^{12}$C, for which actual three-body continuum calculations are very involved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.