Abstract

The basic characteristic of kinematically redundant robots is that non-unique joint solutions may exist for a specified end effector location. Thus, trajectory planning for a kinematically redundant robot requires an optimization procedure to determine the joint displacements when solving the inverse kinematics relations. In this paper an analytical solution is developed for the trajectory optimization problem of redundant robots based on the classical Lagrange’s method. A detailed formulation is provided for seven degrees of freedom robots, which minimizes the Euclidean norm of joint dislacements for point-to-point motion trajectory planning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.