Abstract

The properties of modified Hayward black hole space-time can be investigated through analyzing the particle geodesics. By means of a detailed analysis of the corresponding effective potentials for a massive particle, we find all possible orbits which are allowed by the energy levels. The trajectories of orbits are plotted by solving the equation of orbital motion numerically. We conclude that whether there is an escape orbit is associated with $b$ (angular momentum). The properties of orbital motion are related to $b$, $\alpha$ ($\alpha$ is associated with the time delay) and $\beta$ ($\beta$ is related to 1-loop quantum corrections). There are no escape orbits when $b$ $<$ $4.016M$, $\alpha$ = 0.50 and $\beta$ = 1.00. For fixed $\alpha$ = 0.50 and $\beta$ = 1.00, if $b$ $<$ $3.493M$, there only exist unstable orbits. Comparing with the regular Hayward black hole, we go for a reasonable speculation by mean of the existing calculating results that the introduction of the modified term makes the radius of the innermost circular orbit (ISCO) and the corresponding angular momentum larger.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.