Abstract

An analytical thermal model of conduction mode double sided arc welding (DSAW) has been derived and used to predict the weld pool dimensions and shapes and temperatures within 2˙5 and 1˙15 mm thick AA5182 Al alloy sheets as functions of the primary DSAW parameters. Separate Gaussian distributed arc heat sources from a plasma arc welding and gas tungsten arc welding torch were assumed to act on the top and bottom surfaces of the sheets. There was excellent correlation between observed and predicted DSAW weld pool dimensions and shapes provided that suitable values for arc efficiencies and distribution coefficients for the two separate arcs were used in the model. The model is capable of predicting weld pool dimensions and shapes of both full and partial penetration conduction mode DSAW welds made in Al alloy sheet, the welding speed at which there is a transition from full to partial penetration welding and the speed above which no melting occurs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.