Abstract

SummaryInjection of either carbon dioxide (CO2) or nitrogen (N2) enhances recovery of coalbed methane. In this paper, we provide new analytical solutions for the flow of ternary gas mixtures in coalbeds. The adsorption/desorption of gaseous components to/from the coalbed surface is approximated by an extended Langmuir isotherm, and the gas-phase behavior is predicted by the Peng-Robinson equation of state (EOS). Langmuir isotherm coefficients are used that represent a moist Fruitland coal sample from the San Juan basin (U.S.A.). In these calculations, mobile liquid is not considered. Given constant initial and injection compositions, a self-similar solution consisting of continuous waves and shocks is found. Mixtures of CH4,CO2, and N2 are used to represent coalbed and injection gases. We provide examples for systems where the initial gas is largely CH4, and binary mixtures of CO2 and N2 are injected. Injection of N2-CO2 mixtures rich in N2 leads to relatively fast initial recovery of CH4. Injection of mixtures rich in CO2 gives slower initial recovery, increases breakthrough time, and decreases the injectant needed to sweep out the coalbed. The solutions presented indicate that a coalbed can be used to separate N2 and CO2 chromatographically at the same time coalbed methane (CBM) is recovered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.