Abstract

Influenza virus-like particle vaccines are one of the most promising ways to respond to the threat of future influenza pandemics. VLPs are composed of viral antigens but lack nucleic acids making them non-infectious which limit the risk of recombination with wild-type strains. By taking advantage of the advancements in cell culture technologies, the process from strain identification to manufacturing has the potential to be completed rapidly and easily at large scales. After closely reviewing the current research done on influenza VLPs, it is evident that the development of quantification methods has been consistently overlooked. VLP quantification at all stages of the production process has been left to rely on current influenza quantification methods (i.e. Hemagglutination assay (HA), Single Radial Immunodiffusion assay (SRID), NA enzymatic activity assays, Western blot, Electron Microscopy). These are analytical methods developed decades ago for influenza virions and final bulk influenza vaccines. Although these methods are time-consuming and cumbersome they have been sufficient for the characterization of final purified material. Nevertheless, these analytical methods are impractical for in-line process monitoring because VLP concentration in crude samples generally falls out of the range of detection for these methods. This consequently impedes the development of robust influenza-VLP production and purification processes. Thus, development of functional process analytical techniques, applicable at every stage during production, that are compatible with different production platforms is in great need to assess, optimize and exploit the full potential of novel manufacturing platforms.

Highlights

  • The World Health Organization (WHO) reports approximately 500 million cases of influenza infection and between 250,000 to 500,000 deaths annually due to seasonal epidemics [1,2]

  • This would bring up the problem of strain specific antibodies, so staying with a generic labeling system with adapted software would be the most beneficial to address the need of total particle quantification for virus-like particles (VLPs) process development and final product characterization

  • As more research is done on influenza VLPs through the lens of bioprocessing for industrial applications; it has become obvious that these methods are deeply impeding the development of manufacturing processes

Read more

Summary

Introduction

The World Health Organization (WHO) reports approximately 500 million cases of influenza infection and between 250,000 to 500,000 deaths annually due to seasonal epidemics [1,2]. In mid-January 2013, the first trivalent influenza vaccine made using an insect virus (baculovirus) expression system and recombinant DNA technology, Flublok (Protein Science Corporation), was approved for the prevention of seasonal influenza in people 18 through 49 years of age [8]. These recent approvals reflect an important trend in the vaccine industry of adopting modern cell culture manufacturing technologies. This strategy is clearly supported by the public health and regulatory agencies that invested massively over the last five years to promote more adequate responses to emerging infectious disease

Objectives
Methods
Findings
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.