Abstract
Cannabis is gaining increasing attention due to the high pharmacological potential and updated legislation authorizing multiple uses. The development of time- and cost-efficient analytical methods is of crucial importance for phytocannabinoid profiling. This review aims to capture the versatility of analytical methods for phytocannabinoid profiling of cannabis and cannabis-based products in the past four decades (1980–2021). The thorough overview of more than 220 scientific papers reporting different analytical techniques for phytocannabinoid profiling points out their respective advantages and drawbacks in terms of their complexity, duration, selectivity, sensitivity and robustness for their specific application, along with the most widely used sample preparation strategies. In particular, chromatographic and spectroscopic methods, are presented and discussed. Acquired knowledge of phytocannabinoid profile became extremely relevant and further enhanced chemotaxonomic classification, cultivation set-ups examination, association of medical and adverse health effects with potency and/or interplay of certain phytocannabinoids and other active constituents, quality control (QC), and stability studies, as well as development and harmonization of global quality standards. Further improvement in phytocannabinoid profiling should be focused on untargeted analysis using orthogonal analytical methods, which, joined with cheminformatics approaches for compound identification and MSLs, would lead to the identification of a multitude of new phytocannabinoids.
Highlights
Cannabis sativa L. (C. sativa L.), from the family Cannabaceae, is the most widely cultivated, trafficked, consumed and investigated, yet most notorious and controversial, plant in the world [1,2]
This review aims to capture the versatility of analytical methods for natural phytocannabinoids profiling in cannabis and cannabis-based products in the past four decades
GC coupled to versatile detectors and mass analyzers is one of the oldest, but still the most preferred and researched analytical platforms for phytocannabinoid profiling in both plant material and biological matrices due to its robustness, reproducibility, sensitivity and speed [1,42,58,153]
Summary
Cannabis sativa L. (C. sativa L.), from the family Cannabaceae, is the most widely cultivated, trafficked, consumed and investigated, yet most notorious and controversial, plant in the world [1,2]. (C. sativa L.), from the family Cannabaceae, is the most widely cultivated, trafficked, consumed and investigated, yet most notorious and controversial, plant in the world [1,2]. It is one of the oldest known crops to humanity, with first records of use dating to 3000 B.C. Due to the difficulty in distinguishing cannabis species either morphologically or chemically, and given the continuous changes occurring in subspecies according to the cultivation environment, the designation C. sativa is considered suitable for all plants from the genus [3,5]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.