Abstract
Synthetic calcium phosphate bone void fillers promote varying rates of bone formation and material resorption depending on chemistry, porosity, pore structure, and implant site. The objective of this study was to quantify the resorption of a novel ultraporous beta-tricalcium phosphate cancellous bone void filler with simultaneous quantification of bone formation in a canine humerus model. Potential measurement error involved in conventional histomorphometry using Von Kossa stains inspired the development of a new technique. This technique utilizes bright-field and polarized-light microscopy in conjunction with image analysis software, allowing more accurate histomorphometry. This technique was validated with two separate controlled experiments. Scanning electron microscopy further supported the results. The findings suggest that the use of polarized-light microscopy combined with image analysis software can be an effective tool in simultaneously quantifying calcium phosphate resorption and bone formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of biomedical materials research. Part B, Applied biomaterials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.