Abstract

A fully analytical surface-potential-based drain current model for amorphous InGaZnO (α-IGZO) thin film transistors (TFTs) has been developed based on a Gaussian distribution of subgap states, with the central energy fixed at the conduction band edge, which is approximated by two exponential distributions. This model includes both drift and diffusion components to describe the drain current in all regions of operation. Using an empirical mobility relationship that depends on both horizontal and vertical electric field, it is demonstrated that the model describes accurately the experimental transfer and output characteristics, making the model suitable for the design of circuits using α-IGZO TFTs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.