Abstract
To study the mechanical responses of large cross-section tunnel reinforced by pretensioned rock bolts and anchor cables, an analytical model is proposed. Considering the interaction between rock mass and bolt-cable support, the strain softening characteristic of rock mass, the elastic-plastic characteristic of bolt-cable support, and the delay effect of installation are considered in the model. To solve the different mechanical cases of tunneling reinforced by bolt-cable support, an analytical approach has been put forward to get the solutions of stress and displacement associated with tunneling. The proposed analytical model is verified by numerical simulation. Moreover, parametric analysis is performed to study the effects of pretension force, cross-section area, length, and supporting density of bolt-cable support on tunnel reinforcement, which can provide references for determining these parameters in tunnel design. Based on the analytical model, a new Ground Response Curve (GRC) considering the reinforcement of bolt-cable support is obtained, which shows the pretension forces and the timely installation are important in bolt-cable support. In addition, the proposed model is applied to the analysis of the Great Wall Station Tunnel, a high-speed railway tunnel with a super large cross-section, which shows that the analytical model of bolt-cable support was a useful tool for preliminary design of large cross-section tunnel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.