Abstract

In this paper, considering bi-viscous Bingham as the base fluid, we study the thermophysical-properties (such as density, specific heat, thermal conductivity, thermal diffusivity, and thermal expansion) with different combinations of salts among NaCl, KCl, CaCl2, and NaCl2 of triple diffusive convection in a bi-viscous Bingham fluid layer with heat as one of the diffusing components. A weakly non-linear case is formulated to facilitate a solution to the problem using a series solution Ginzburg-Landau model. With regard to single, double, and triple diffusive convection, the tables are made to record the actual values of thermophysical-properties together with the critical Rayleigh-number for each combination of aqueous-salt solutions. This computation calculates the mean Nusselt and Sherwood numbers to quantify the system’s heat- and mass-transfers for various aqueous-solutions. The effect of the bi-viscous Bingham fluid parameter, for small and large values, for different aqueous-solutions, in single, double, and triple diffusive convection has been captured via 2-dimensional (2D) and 3-dimensional (3D) figures and the results are recorded and compared. The investigation reveals that the heat- and mass-transfers increase with an increase or decrease in the bi-viscous Bingham fluid parameter, which in turn depends on the values of R S 1 and R S 2 . The results confirm that the heat- and mass-transfers are least for the combination of KCl with CaCl2 and maximum for the combination of NaCl with other salts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.