Abstract

Under investigation in this paper is a nonlinear Schrödinger equation with an arbitrary linear time-dependent potential, which governs the soliton dynamics in quasi-one-dimensional Bose–Einstein condensates (quasi-1DBECs). With Painlevé analysis method performed to this model, its integrability is firstly examined. Then, the distinct treatments based on the truncated Painlevé expansion, respectively, give the bilinear form and the Painlevé–Bäcklund transformation with a family of new exact solutions. Furthermore, via the computerized symbolic computation, a direct method is employed to easily and directly derive the exact analytical dark- and bright-solitonic solutions. At last, of physical and experimental interests, these solutions are graphically discussed so as to better understand the soliton dynamics in quasi-1DBECs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.