Abstract

We present an analytical solution of the single photon quantum feedback in a cavity quantum electrodynamics system based on a half cavity set-up coupled to a structured continuum. The exact analytical expression we obtain allows us to discuss in detail under which conditions a single emitter-cavity system, which is initially in the weak coupling regime, can be driven into the strong coupling regime via the proposed quantum feedback mechanism [Carmele et al, Phys.Rev.Lett. 110, 013601]. Our results reveal that the feedback induced oscillations rely on a well-defined relationship between the delay time and the atom-light coupling strength of the emitter. At these specific values the leakage into the continuum is prevented by a destructive interference effect, which pushes the emitter to the strong coupling limit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call