Abstract

Blade coating process is widely applied in the industry for its practical applications in photographic films, paint industries, and magnetic storage devices. Also for manufacturing newspaper, metal coating, electronic circuit boards, and textile fibers. The blade coating process passes a fluid into the gap between the moving substrate and blade. This study uses the Rabinowitsch model which represents the Newtonian, shear thickening, and shear thinning effects by changing a non-linear parameter. Lubrication theory is used to simplify the dimensionless governing expressions. Then perturbation technique is used up to second order to solve the resultant system and validated by the numerical shooting technique. The graphs and tables present how the non-linear parameter affects the dimensionless velocity, pressure profile, coating thickness, and blade load. The non-linear model parameter proves to be the controlling parameter for the coating thickness, blade load, and pressure distribution, helping in determining the coating efficiency and improving the substrate life. This paper provides the theoretical framework for engineers to be applied in many industrial applications. In future, further validation of results can be done through experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.