Abstract
The boundary integral equation is solved analytically in the case of two‐ and three‐dimensional growth of angled dendrites and arbitrary parabolic/paraboloidal solid/liquid interfaces. The undercooling of a binary melt and the solute concentration at the phase transition boundary are found. The theory under consideration has a potential impact in describing more complex growth shapes and interfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.