Abstract

To reveal the temperature rise evolution mechanism of isotropic media subjected to reciprocating motion constant-strength point heat source, various forms of analytical solutions are derived on the basis of differentiated relative scales, and non-dimensionalized parameters are designed to characterize the thermal distribution regularities by utilizing numerical calculations. Temperature rise curves of media subjected to a reciprocating motion point heat source allow similar quasi-steady-state characteristics to appear, which finally achieve a stable state, so that the values of surplus temperature oscillate around the constant time-average quantity. The time to reach quasi-steady state, the time-averaged quantity and the fluctuation amplitude of surplus temperature are comprehensively impacted by the dimensionless distance parameter γ, the convective heat transfer parameter ω and the velocity and travel parameter β. This work discusses influence rules of temperature evolution in various relative-scale media and further enriches the moving heat source theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.