Abstract

A detailed understanding of the flow of a liquid metal in a rectangular duct subject to a strong transverse magnetic field is vital in a number of engineering applications, notably for proposed blanket technologies for fusion reactors. Fusion reactors offer the potential for clean base-load energy and their development is now entering an engineering phase where the practical means by which the energy released can be converted into useful heat must be addressed. To such ends, this article considers the convective heat transfer processes for fully developed laminar magnetohydrodynamic (MHD) flows in rectangular ducts of the kind proposed in some blanket designs. Analytical solutions which incorporate the nonuniformity of peripheral temperature and heat flux and the effect of volumetric heating, are developed as functions of magnetic field strength and duct aspect ratio. A distinct feature of these MHD problems, not yet addressed in the literature, is that unlike the conventional characterization of heat transfer by a Nusselt number, it is necessary to generalize the concept to vectors and matrices of Nusselt coefficients, due to the extreme anisotropy of both the flow and heating. The new analytical results presented here capture more complex heat transfer behavior than non-MHD flows and in particular characterize the importance of aspect ratio. The importance of these new results lie not only in the improved understanding of this complex process but also in the provision of characterizations of convective heat transfer which underpin progress toward systems scale simulations of fusion blanket technology which will be vital for the realization of practical fusion reactors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call