Abstract

<abstract> <p>In this article, a class of fractional coupled nonlinear Schrödinger equations (FCNLS) is suggested to describe the traveling waves in a fractal medium arising in ocean engineering, plasma physics and nonlinear optics. First, the modified Kudryashov method is adopted to solve exactly for solitary wave solutions. Second, an efficient and promising method is proposed for the FCNLS by coupling the Laplace transform and the Adomian polynomials with the homotopy perturbation method, and the convergence is proved. Finally, the Laplace-HPM technique is proved to be effective and reliable. Some 3D plots, 2D plots and contour plots of these exact and approximate solutions are simulated to uncover the critically important mechanism of the fractal solitary traveling waves, which shows that the efficient methods are much powerful for seeking explicit solutions of the nonlinear partial differential models arising in mathematical physics.</p> </abstract>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.