Abstract
Analytical solutions of the advection–dispersion solute transport equation remain useful for a large number of applications in science and engineering. In this paper we extend the Duhamel theorem, originally established for diffusion type problems, to the case of advective–dispersive transport subject to transient (time-dependent) boundary conditions. Generalized analytical formulas are established which relate the exact solutions to corresponding time-independent auxiliary solutions. Explicit analytical expressions were developed for the instantaneous pulse problem formulated from the generalized Dirac delta function for situations with first-type or third-type inlet boundary conditions of both finite and semi-infinite domains. The developed generalized equations were evaluated computationally against other specific solutions available from the literature. Results showed the consistency of our expressions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Chemical Engineering Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.