Abstract

Two generalized mathematical models with memory for the concentration of tumor cells have been analytically studied using the cylindrical coordinate and the integral transform methods. The generalization consists of the formulating of two mathematical models with Caputo-time fractional derivative, models that are suitable to highlight the influence of the history of tumor evolution on the present behavior of the concentration of cancer cells. The time-oscillating concentration of cancer cells has been considered on the boundary of the domain. Analytical solutions of the fractional differential equations of the mathematical models have been determined using the Laplace transform with respect to the time variable and the finite Hankel transform with respect to the radial coordinate. The positive roots of the transcendental equation with Bessel function J0(r)=0, which are needed in our study, have been determined with the subroutine rn=root(J0(r),r,(2n−1)π/4,(2n+3)π/4),n=1,2,… of the Mathcad 15 software. It is found that the memory effects are stronger at small values of the time, t. This aspect is highlighted in the graphical illustrations that analyze the behavior of the concentration of tumor cells. Additionally, the concentration of cancer cells is symmetric with respect to radial angle, and its values tend to be zero for large values of the time, t.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.