Abstract
The complex Ginzburg-Landau model appears in the mathematical description of wave propagation in nonlinear optics. In this paper, the fractional complex Ginzburg-Landau model is investigated using the generalized exponential rational function method. The Kerr law and parabolic law are considered to discuss the nonlinearity of the proposed model. The fractional effects are also included using a novel local fractional derivative of order α . Many novel solutions containing trigonometric functions, hyperbolic functions, and exponential functions are acquired using the generalized exponential rational function method. The 3D-surface graphs, 2D-contour graphs, density graphs, and 2D-line graphs of some retrieved solutions are plotted using Maple software. A variety of exact traveling wave solutions are reported including dark, bright, and kink soliton solutions. The nature of the optical solitons is demonstrated through the graphical representations of the acquired solutions for variation in the fractional order of derivative. It is hoped that the acquired solutions will aid in understanding the dynamics of the various physical phenomena and dynamical processes governed by the considered model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.