Abstract

Summary The removal of nonaqueous phase liquids (NAPLs) from contaminated soils by means of fresh water injection through a rejection well can be treated as a fully coupled problem involving the NAPL dissolution, radial aqueous-phase-liquid flow and dissolved NAPL transport through solute advection and diffusion/dispersion. The governing equations of this coupled problem can be mathematically described by a set of simultaneous partial differential equations with variable coefficients. In the case of the NAPL dissolution ratio (which is defined as the ratio of the equilibrium concentration of the dissolved NAPL to the density of the NAPL) approaching zero, analytical solutions for the NAPL dissolution problem associated with radial aqueous-phase-liquid flow have been derived in this paper. As a direct application example, the derived analytical solutions are used to investigate the fundamental behaviours of the NAPL dissolution problems associated with radial aqueous-phase-liquid flow in the fluid-saturated porous media. The related analytical results have demonstrated that three key factors, namely the dimensionless comprehensive number (which is known as the Zhao number and can be used to represent the overall hydrodynamic characteristic of a NAPL dissolution system), the initial saturation of the residual NAPL and the dimensionless injection well radius, can have significant effects on the dimensionless NAPL dissolution front propagation speed, the dimensionless NAPL dissolution front location and dimensionless breakthrough time of the NAPL dissolution front in the NAPL dissolution system associated with radial aqueous-phase-liquid flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.