Abstract
Analysis of the movement of particles in a nonuniform field requires accurate knowledge of the electric field distribution in the system. This paper describes a method for analytically solving the electric field distribution above interdigitated electrode arrays used for dielectrophoresis (DEP) and traveling wave dielectrophoresis (twDEP), using the Schwarz-Christoffel mapping method. The electric field solutions are used to calculate the dielectrophoretic force in both cases, and the traveling wave dielectrophoretic force and the electrorotational torque for the twDEP case. This method requires no approximations and can take into account the Neumann boundary condition used to represent an insulating lid and lower substrate. The analytical results of the electric field distributions are validated for different geometries by comparison with numerical simulations using the finite element method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.