Abstract
A nonlocal model based on the strain gradient approach is developed within the framework of the Third-order Shear Deformation Theory (TSDT) for the investigation of the free vibrations and the critical buckling loads of laminated composite nanoplates. The theory is suitable to deal with thick and thin plates since it includes also the First-order Shear Deformation Theory (FSDT) and the Classical Laminated Plate Theory (CLPT). An analytical procedure based on the Navier approach is employed to obtain the solutions, which are discussed highlighting the effects of the strain gradient, as well as the influence of the geometric ratios and mechanical properties, on the results. The paper aims at providing reliable benchmarks for further developments of the topic to be used as references in future comparison tests.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.