Abstract

An analytical solution is developed to quantify a site-specific fluorophore lifetime perturbation that occurs, for example, when the local metabolic status is different from that of surrounding tissue. This solution may be used when fluorophores are distributed throughout a highly turbid media and the site of interest is embedded many mean scattering distances from the source and the detector. The perturbation in lifetime is differentiated from photon transit delays by random walk theory. This analytical solution requires a priori knowledge of the tissue-scattering and absorption properties at the excitation and emission wavelengths that may be obtained from concurrent time-resolved reflection measurements. Additionally, the solution has been compared with the exact, numerically solved solution. Thus the presented solution forms the basis for practical lifetime imaging in turbid media such as tissue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.