Abstract
Many laser interaction models assume that incident focused laser fields are Gaussian and use either the approximate TEM00 series model or the exact integral Gaussian angular-spectrum solution. Many practical laser systems, however, produce flat-top transverse intensity profiles, and indeed, such profiles are often desired. Here, an exact, integral solution is derived for all of the vector components having a general flattened Gaussian profile using the angular-spectrum method. This solution includes the pure and annular Gaussian modes as special cases. The resulting integrals are solved for tight focusing conditions exactly by making use of a Fourier-Gegenbauer expansion. This technique follows closely that of Sepke and Umstadter [Opt. Lett.31, 1447 (2006)] but, by redefining the expansion coefficients, the simplicity of the model is greatly enhanced and the computation time reduced by roughly a factor of 2 beyond the 2 orders of magnitude improvement obtained previously. This series solution is stable at all points and converges after S∼20w0 terms, where w0 is the 1/e waist normalized to the laser wavelength.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.