Abstract

This paper deals with new analytical solutions to predict tensile and in-plane shear strengths of triaxial weave fabric (TWF) composites accounting for the interaction between angularly interlacing yarns. The triaxial yarns in three directions of 0° and ±60° in micromechanical unit cell (UC) are idealized as the curved beams with a path depicted by using sinusoidal shape functions. The tensile and in-plane shear strengths of TWF composites are derived by means of the minimum total complementary potential energy principle founded on micromechanics. In order to validate the new model, the predictions are compared with experimental data in prior literatures. It is shown that the predictions from the new model agree well with experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.