Abstract

The objective of this paper is to investigate the large deflection of a slender functionally graded beam under the transverse loading. Firstly, by modeling the functionally graded beam as a layered structure with graded yield strength, a unified yield criterion for a functionally graded metallic beam is established. Based on the proposed yielding criteria, analytical solutions (AS) for the large deflections of fully clamped functionally graded beams subjected to transverse loading are formulated. Comparisons between the present solutions with numerical results are made and good agreements are found. The effects of gradient profile and gradient intensity factor on the large deflections of functionally graded beams are discussed in detail. The reliability of the present analytical model is demonstrated, and the larger the gradient variation ratio near the loading surface is, the more accurate the layer-graded beam model will be.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.