Abstract

This paper derives analytical solutions for the forced vibrations of Timoshenko curved beams and establishes the vibration equation of Timoshenko curved beams by analyzing the equilibrium equation for the intersection of curved beams. Green’s functions of Timoshenko curved beams are solved for different boundary conditions using the separation of variables and Laplace transform. Two characteristic parameters are introduced to measure damping effects on beam vibrations. Numerical calculations are conducted to validate analytical solutions, and the effects of various related physical parameters are investigated. The results show that by setting the radius R to infinity, it can be simplified to the Timoshenko straight beam vibration model, and on this basis, if the shear correction factor κ is set to infinity, it can be reduced to the Prescott straight beam vibration model. Finally, the moment of inertia γ is set to 0, which can be reduced to the Bernoulli-Euler straight beam vibration model. Numerical calculations are performed to validate the solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.