Abstract

Two analytical solution methods are presented for regional steady-state groundwater flow in a two-dimensional stratified aquifer cross section where the water table is approximated by the topographic surface. For the first solution, the surficial aquifer is represented as a set of dipping parallel layers with different, but piecewise constant, anisotropic hydraulic conductivities, where the anisotropy is aligned with the dip of the layered formation. The model may be viewed as a generalization of the solutions developed by [Tóth JA. A theoretical analysis of groundwater flows in small drainage basins. J Geophys Res 1963;68(16):4795–812; Freeze R, Witherspoon P. Theoretical analysis of regional groundwater flow 1) analytical and numerical solution to the mathematical model, water resources research. Water Resour Res 1966;2(4):641–56; Selim HM. Water flow through multilayered stratified hillside. Water Resour Res 1975;11:949–57] to an multi-layer aquifer with general anisotropy, layer orientation, and a topographic surface that may intersect multiple layers. The second solution presumes curved (syncline) layer stratification with layer-dependent anisotropy aligned with the polar coordinate system. Both solutions are exact everywhere in the domain except at the topographic surface, where a Dirichlet condition is met in a least-squared sense at a set of control points; the governing equation and no-flow/continuity conditions are met exactly. The solutions are derived and demonstrated on multiple test cases. The error incurred at the location where the layer boundaries intersect the surface is assessed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.