Abstract

This article considers the hydrodynamic problem of an oblique flow of a viscous incompressible fluid around the tip of a dendritic crystal. Approximate analytical solutions of Oseen's hydrodynamic equations are obtained in 2D and 3D cases using special curvilinear coordinates. It is shown that the projections of the fluid velocity change significantly with a change in the flow slope and Reynolds number. The theory developed in this work has a limiting transition to the previously known solutions for the rectilinear (without tilt) fluid flow around a dendrite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.