Abstract

A power-series method developed for plane-strain slip-line field theory is applied to the construction of minimum-weight Michell frameworks. The relationship between the space and force diagrams is defined as a basis for weight calculations. Analytical solutions obtained by the method are shown to agree with known solutions that were obtained through virtual displacement calculations. Framework boundary conditions are investigated, and matrix operators used in slip-line field theory are shown to apply to the force-free straight framework boundary-value problem. The matrix operator method is used to illustrate the transition from circular arc-based to cycloid-based Michell solutions. Finally, an example is given in the use of the method for evaluation of support boundary conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.